Deep Learning For Sequential Data – Part V: Handling Long Term Temporal Dependencies

PERPETUAL ENIGMA

1 mainIn the previous blog post, we learnt why we cannot use regular backpropagation to train a Recurrent Neural Network (RNN). We discussed how we can use backpropagation through time to train an RNN. The next step is to understand how exactly the RNN can be trained. Does the unrolling strategy work in practice? If we can just unroll an RNN and make it into a feedforward neural network, then what’s so special about the RNN in the first place? Let’s see how we tackle these issues.  

View original post 867 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s